Modernizing the Data Warehouse

The Marriage of Big Data and Relational Technologies

Dirk deRoos
dderoos@ca.ibm.com
@Dirk_deRoos
World-Wide Technical Sales, Big Data
The Evolution of Analytics

- **1960s: Navigational DBMS**
 - IMS (hierarchical)

- **1970s-1980s: Relational DBMS**
 - SQL
 - System R, System Z, DB2

- **1990s: Data Warehouse**
 - Dimensional model, ETL, MDM

- **Today: Big Data/NoSQL**
Pressures on Traditional Relational Stores

- Budgetary constraints
- Technical change/
 Different forms of data
- Regulatory pressures
 (SLAs, Archive, Governance)
The NoSQL Revolution

- Different requirements require different tools
 - Document stores
 - Key/value stores
 - Google BigTable implementations
 - Graph databases

- Values (there are exceptions)
 - Huge data volumes – easy scale-out
 - Semi-structured data
 - Extreme performance
Database Genres
A High-level View

Data Size

Data Complexity

Key/Value
Columnar
Document
Graph
Relational
Traditional Warehousing vs. NoSQL

ACID vs. BASE

- Atomicity
- Consistency
- Isolation
- Durability

- Basically Available
- Soft state
- Eventually consistent
Hadoop – Architecture

- **Master / Slave architecture**

- **Master: NameNode**
 - Manages the file system namespace and metadata
 - FsImage
 - EditLog
 - Regulates access by files by clients

- **Slave: DataNode**
 - Many DataNodes per cluster
 - Manages storage attached to the nodes
 - Periodically reports status to NameNode
 - Data is stored across multiple nodes
 - Nodes and components will fail, so for reliability data is replicated across multiple nodes
Hadoop Distributed File System

- HDFS is designed to support very large files
- Each file is split into blocks
 - Hadoop default: 64MB
 - BigInsights default: 128MB

- Blocks reside on different physical DataNode
- Behind the scenes, 1 HDFS block is supported by multiple operating system blocks

If a file or a chunk of the file is smaller than the block size, only needed space is used. E.g.: a 210MB file is split as follows:

<table>
<thead>
<tr>
<th>64 MB</th>
<th>64 MB</th>
<th>64 MB</th>
<th>18 MB</th>
</tr>
</thead>
</table>

HDFS blocks

OS blocks
MapReduce Explained

- **Hadoop computation model**
 - Data stored in a distributed file system spanning many inexpensive computers
 - Bring function to the data
 - Distribute application to the compute resources where the data is stored

- **Scalable to thousands of nodes and petabytes of data**

```
public static class TokenizerMapper
    extends Mapper<Object, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
    public void map(Object key, Text val, Context context)
    StringTokenizer itr = new StringTokenizer(val.toString());
    while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one);
    }
}
```

```
public static class IntSumReducer
    extends Reducer<Text, IntWritable, Text, IntWritable> {
    private IntWritable result = new IntWritable();
    public void reduce(Text key, Iterable<IntWritable> values, Context context) {
        int sum = 0;
        for (IntWritable v : values) {
            sum += v.get();
        }
        context.write(key, result);
    }
}
```

1. **Map Phase**
 (break job into small parts)
2. **Shuffle**
 (transfer interim output for final processing)
3. **Reduce Phase**
 (boil all output down to a single result set)
Next Generation Hadoop

- Beyond MapReduce
- General purpose storage and processing framework
Complementary Analytics

Traditional Approach
Structured, analytical, logical

New Approach
Creative, holistic thought, intuition

Structured Repeatable Linear
- Data Warehouse
 - Transaction Data
 - Internal App Data
 - Mainframe Data
 - OLTP System Data
 - ERP data

Unstructured Exploratory Iterative
- NoSQL Hadoop Streams
 - Web Logs
 - Social Data
 - Text Data: emails
 - Sensor data: images
 - RFID

Enterprise Integration

Traditional Sources
- Internal App Data
- Mainframe Data
- OLTP System Data
- ERP data

New Sources
- NoSQL Hadoop Streams
- Web Logs
- Social Data
- Text Data: emails
- Sensor data: images
- RFID
Traditional Data Mining and Exploratory Analysis
Data Governance Maturity Disciplines

- Organizational awareness
- Stewardship
- Policy
- Value creation
- Data risk management
- Security/Privacy/Compliance

- Data architecture
- Data quality
- Business glossary/metadata
- Information lifecycle management
- Audit and reporting
Data Governance Maturity Disciplines

NoSQL Challenges

- Organizational awareness
- Stewardship
- Policy
- Value creation
- Data risk management
- Security/Privacy/Compliance

- Data architecture
- Data quality
- Business glossary/metadata
- Information lifecycle management
- Audit and reporting
Traditional Analytics

Data types
- Transaction and application data

Operational systems

Staging area

Enterprise Warehouse

Data Marts

Information Movement and Transformation

Actionable insight
- Predictive analytics and modeling
- Reporting and analysis

Archive
IBM Big Data Architecture Vision

All Data Sources

- Raw Data
- Structured Data
- Text Analytics
- Data Mining
- Entity Analytics
- Machine Learning

Information Ingestion and Operational Information
- Stream Processing
- Data Integration
- Master Data

Big Data Ecosystem

- Real-time Analytic Zone
 - Video/Audio
 - Network/Sensor
 - Entity Analytics
 - Predictive

- Landing Area, Analytics Zone and Archive
 - Discovery
 - Deep Reflection
 - Operational
 - Predictive

- Exploration, Integrated Warehouse, and Mart Zones

Streams

Analytic Applications

- Intelligence Analysis
- Decision Management
- BI and Predictive Analytics
- Analytic Applications

Information Governance, Security and Business Continuity
Analytics for Data-in-Motion

- Scale-out architecture for massive linear scalability
- Sophisticated analytics with pre-built toolkits & accelerators
- Comprehensive development tools to build applications with minimal learning

Real time delivery

- Powerful Analytics
- Traditional / Non-traditional data sources
- Algorithmic Trading
- Cyber Security
- Government / Law enforcement
- Smart Grid
- Telco Churn Prediction
- ICU Monitoring
- Environment Monitoring

- Microsecond Latency
- Millions of events per second

Video, audio, networks, social media, etc
BigInsights: IBM’s Hadoop Distribution

- **Analysis**
 - Native SQL interface
 - Native R interface
 - Text analysis toolkit
 - Social analysis toolkit
 - Spreadsheet style analysis GUI

- **Development lifecycle**
 - Cluster aware Eclipse plug-ins
 - App Store for Hadoop

- **Data Exploration**
 - Indexing and faceted search
 - Search-based applications

- **Management**
 - Enterprise file system
 - Advanced replication
 - Multi-temp storage
 - POSIX controls
 - Grid management
 - Mature resource manager
 - Multi-tenant workload support

- **Baked-in security**
 - LDAP
 - Role-based authorization
 - Perimeter security with reverse-proxy
Big SQL

- **Architecture**
 - IBM Optimizer + IBM Compiler + IBM Runtime => Ported to Hadoop
 - Nodes integrated in Hadoop cluster, direct access to Hadoop data
 - Queries Hadoop data – no proprietary data format
 - MapReduce run-time also available for query execution

- **Benefits**
 - Extensive SQL support (ANSI, IBM, Oracle, Teradata)
 - Performance: Maturity – 30 years of engineering
 - Federated joins between relational systems and Hadoop
 - Security: Row and column access control
Deep Statistical Analysis: Big R

- **Fit-for-purpose architecture for deep statistical analysis**
 - Problems involving small data sets (10GB): R
 - Problems involving partitioned data sets (e.g. 32 x 10GB): BigR
 - Problems involving large data sets: (TB range): BigR using SystemML

- **R integration in BigInsights**
 - R code can be deployed against data stored in BigInsights
 - Big R: partitioning larger data sets and executing R code against them
 - Seamless access to data in BigInsights
 - Enterprise friendly license (no GPL)

- **SystemML**
 - Some data sets cannot be logically partitioned: too big for R
 - Engine designed for massive scale on Hadoop
 - Numerically accurate results
 - Provide an R interface for SystemML
Big Match

Find and Integrate Master Data in Big Data Sources

- **How It Works**
 - Probabilistic matching on big data platform (BigInsights-Hadoop)
 - Matching at a higher volume
 - Matching of a wider variety of data sets

- **Client Value**
 - Find master data within big data sources
 - Get an answer faster – enable real-time matching at big data volumes

- **Building Big Data Confidence**
 - Provides more context by detecting master entities faster
Unique Data Matching Capabilities for Hadoop

Probabilistic matching engine and pre-built algorithms integrated into BigInsights for linking all data related to a customer natively within Hadoop

Internal / Structured

- Chris.johnson@cj.net
- C. Johnson
 - 123 Main Street
 - 512-545-1234
- Chris Johnston
 - 123 Main Street
 - 512-554-1234
 - Shipping: 456 Pine Ave
- C. Johnson
 - 125 Main Street
 - 512-554-1234
- C. Johnson
 - Main Street
 - 512-554-1234

External / Unstructured

- ChrisJohnson65
 - "Likes" Clothes, Camping Gear
- Christine Johnson
 - Married
 - 1 child
 - 4/15/74
- @ChristyJohnson65
- Christy65
 - Mail Order responder
 - Specialty Apparel Partner Sales data
- Christy65
 - Circle / Network data

Increased Value of Customer only if...

Big Match matches all these records

Predictive analytics and modeling

VIP: Gold
Customer Sat: 80%
Influence Score: 8/10
Match and Search Differentiators – Fuzzy Matching

- Comprehensive library of fuzzy matching techniques
- Scored against probabilistic weights based on value frequencies in your data

<table>
<thead>
<tr>
<th>Phonetics</th>
<th>Synonyms</th>
<th>Abbreviations</th>
<th>Concatenation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mohammed vs. Mahmoud</td>
<td>Andrew = Andy</td>
<td>AIG = American International Group Road = Rd</td>
<td>Van de Velde = Vandevelde</td>
</tr>
<tr>
<td></td>
<td>George = Jorge</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1st = First</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Edit Distance</th>
<th>Transliteration</th>
<th>Date Similarity</th>
<th>Proximity</th>
</tr>
</thead>
<tbody>
<tr>
<td>867-5309 ~ 876-5309</td>
<td>Toyota = トヨダ</td>
<td>01/01/1973 ~ 01/02/1973</td>
<td>Geocodes and great-circle distance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typographical Errors</th>
<th>Noise Words</th>
<th>Misalignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Smith vs. John Smith</td>
<td>Initiate Inc. = Initiate</td>
<td>Kim Jung-il = Kim il Jung</td>
</tr>
</tbody>
</table>
Logical Data Warehouse – Schema Areas

- **Landing Area**
 - Data Sandbox Areas
 - Self-Provisioning Data (Mixture: Raw & Modeled)

- **Integrating Warehouse & Marts Zone**
 - Data Delta
 - Detailed System of Record Data (Y)
 - Data Delta
 - Detailed System of Record Data (M)

- **Deep Data Zone**
 - Detailed Data Aggregates (Years)
 - Dimensional Data (Years)
 - Subject Data Users
 - User Reports & Dashboards
 - User Guided & Advanced Analytics

- **Exploration Zone**
 - Data Exploration
 - Data Prediction (More Refined Data)
 - Visualization, Data Mining & Exploration
 - Analytical or Predictive Models

- **Data Scientists**
 - Analytical or Predictive Models

- **Subject Data Users**
 - User Reports & Dashboards
 - User Guided & Advanced Analytics

- **Logical Data Warehouse**
 - Summary Data Aggregates (Years)
 - Detailed System of Record Data (Y) (Modeled, Years)
 - Data Delta (ELT)
 - Detailed System of Record Data (M) (Raw, Years) (Modeled, Years)
 - Self-Provisioning Data (Mixture: Raw & Modeled)
THINK BIG
BigInsights Enterprise Edition Components

IBM InfoSphere BigInsights

Visualization & Discovery
- BigSheets
- Governance Catalog
- Data Explorer
- Dashboard / visualization
- Cognos
- Solr/Lucene

Application Support and Development Tooling
- Eclipse
- App infrastructure
- Big SQL
- Jaql
- MapReduce
- Pig
- Hive
- Oozie

Advanced Analytics Engines
- Text Processing Engine and Extractor Library (AQL+HIL)
- Big R / SystemML
- R

Cluster Optimization and Management
- Integrated Installer
- Admin Console
- Enhanced Monitoring
- Splittable Text Compression
- ZooKeeper
- Avro
- Derby

Runtime
- MapReduce
- Adaptive MapReduce
- Platform Symphony

Data Store
- HBase

File System
- HDFS
- GPFS-FPO

Data Ingest Tools
- JDBC
- Teradata
- Netezza
- DB2
- Streams
- Data Click
- Gnip
- BoardReader
- Flume
- Nutch
- Sqoop

Security
- Private firewall
- LDAP or Kerberos
- PAM

IBM InfoSphere BigInsights Components

Open Source

IBM