
Welcome to the presentation.

Thank you for taking your time for being here.

Few success stories that are shared in this presentation could be

familiar to some of you.

I would still hope that most of you would get something useful out

of these lessons that we learnt.

We will have time at the end for questions.

1

Objectives of the presentation that were included when abstract

was submitted to IDUG for consideration.

2

High level Agenda for this presentation.

Agenda could be divided into 2 parts.

In Part 1, we will cover database performance methodology (what

to pay attention for) particularly in Data Warehouses and how to

monitor using DBI tools.

In Part 2, we will cover challenges we faced and tuning success

stories.

3

Pavan Kristipati, an IBM certified Database Administrator is

currently working as Information Systems Technical Specialist at

Huntington Bank in Columbus, Ohio. Pavan could be reached at

https://www.linkedin.com/in/pavankristipati or by email at

pavan.kristipati@gmail.com

Scott Hayes is President and CEO of DBI Software, a frequent

speaker at IDUG conferences, published author, blogger on DB2

LUW performance topics, and the host of The DB2Night Show

Edutainment Webinar Series.

4

Pavan Kristipati, an IBM certified Database Administrator is

currently working as Information Systems Technical Specialist at

Huntington Bank in Columbus, Ohio. Pavan could be reached at

https://www.linkedin.com/in/pavankristipati or by email at

pavan.kristipati@gmail.com

Scott Hayes is President and CEO of DBI Software, a frequent

speaker at IDUG conferences, published author, blogger on DB2

LUW performance topics, and the host of The DB2Night Show

Edutainment Webinar Series.

5

Brief overview of Huntington Bank and its operations and footprint..

6

Data Warehouse Database environment at Huntington Bank on

which the monitoring/tuning efforts shared in this presentation.

7

Details about Enterprise Data Warehouse (EDW) at Huntington

Bank.

As EDW provides 360 degree view of the customer, its database

performance and availability is of paramount importance to the

Bank.

8

Huntington Bank purchased an enterprise license for DBI tools to

manage performance of DB2 LUW databases. These tools are

widely used in performance management of both DW and OLTP

databases.

At Huntington, DBAs use a combination of DBI tools and home

grown UNIX scripts to monitor and manage DB2 LUW

databases.

9

DBI Software is Your trusted partner

for Breakthrough DB2 Performance

Solutions that DELIVER INVALUABLE

RESULTS for Organizations having the

most Demanding Requirements and

Discriminating Preferences.

Scott Hayes began working with DB2 on

distributed platforms at V1 DB2/6000. 22 years

later, after having worked with 100’s of

customers and clients around the world, he has

learned a couple of things about what makes

Data Warehouse Databases run fast.

10

http://www.dbisoftware.com/db2_performance_solutions.php
http://www.dbisoftware.com/db2_performance_solutions.php

While transactional databases focus on indexes and

optimized synchronous I/O, for data warehouses

you need to optimize parallel I/O and prefetching.

While many people pay attention to having data

evenly distributed across the partitions, it is also

important, maybe more important, to make sure

that PROCESSING is evenly distributed across

your partitions. If Parts 1, 2, 3, and 4 are working

really hard, and 9, 10, 11, and 12 are sitting on their

hands, then you’ve got an opportunity for

improvement. Logical Read COST

(LREADs/Transactions) is a good measurement to

evaluate.

11

DW DBs do plenty of I/O without the unnecessary burden of doing

double the I/O due to overflows. If your ETL processes do

UPDATES that increase lengths of VARCHAR columns, you can

end up with a lot of overflow rows – need to REORG, or cleanup

the Overflows in V10.5. DB2 catalog tables are frequent victims

of high Overflows. REORG & RUNSTATS – love your catalog

tables!

db2set DB2_PARALLEL_IO=*

Randomly read tablespaces can be assigned to a Random

bufferpool, including small hot lookup tables.

Most tablespaces will have scans – put into an ASYNC bufferpool

and don’t forget NUMBLOCKPAGES set to ~3% of Pool size

Place your TEMPSPACE on storage paths separate from

tablespaces & indexspaces, if you can

We have seen some customers be able to identify storage system

problems by detecting abnormally high Read/Write latency times

in DB2.

12

You still need indexes in a DW! Good ones!

It’s mind boggling, but we’ve seen some DW

databases run queries twice as fast, or faster, just

by putting a needed index on a 10MB table! Yes,

small tables will likely remain resident in a

bufferpool, but you will suck the life out of your

CPUs by scanning zillions of rows in memory!

Low cardinality indexes can be very adverse to LOAD

& ETL performance because of high cost of

updating long rid list chains.

13

14

High level agenda for the remainder of the

presentation. We will have few minutes for

questions at the end.

15

16

Out of the box, DBI’s Brother Hawk has 100+ pre-defined alerts.

This helps DBAs to start to keep tabs on database performance

and get alerted when thresholds are crossed as soon as the

toolset is installed.

Squelch feature gives option to snooze an alert until a custom

defined interval (for each alert type). Repeated alerts for the

same alert type will indicate on-going problem.

ORMS = Overall Disk Read Time in milli seconds

OWMS = Overall Disk Write Time in milli seconds

17

Snapshot of some of the KPIs that Huntington DBAs

use to manage EDW.

Lock waits, Log Used % would be more useful in

OLTP environments.

Sort overflow, Statement CPU %, IREF, % Table

overflows are few KPIs that we keep tabs on to

monitor for trends.

18

Example of how to configure an alert in DBI’s Brother

Hawk.

Double click on alert of interest and schedule (start,

end times and days of the week) a window to

monitor.

19

Thresholds could be picked for alarm / Warning /

Information.

SMTP alerts could be sent and / or OS / Database

commands could be run when a threshold is

breached.

In one of the slides, there is an example of how we

take an action when table overflows are more than

3%.

20

Brother Hawk’s Alerts Console to identify High

/Medium/Low priority alerts and identify any action

that is needed to be taken.

21

We are now at 2nd part of the presentation in which I

am going to share 4 tuning success stories on

Huntington’s DPF database.

22

We started noticing (getting alerted for) CPU spikes

during ETL cycle duration when new code was

migrated to production.

Besides new code in production, there were power

users who contributed to CPU spikes in production.

This ad hoc activity was unpredictable unlike ETL

activity.

CPU utilization was frequently ~70% and sometimes

reaching 90+%.

DBI’s Panther lets you focus on a particular time

interval for more focused analysis.

23

DBI’s Brother Panther allows to zoom on an area of

interest to get focused look at CPU utilization.

There is also an option to view the ‘statement activity’

during the timeframe selected.

Instead of doing this, what we did was we wanted to

take a holistic look and find out what are our

problematic tables over 24 hour timeframe.

24

This slide shows % Rows Read and Absolute value

of Rows Read at table level for top 10+ tables. Data

is sorted by % Rows Read.

As you notice some values for Rows Read were in

Billions of rows and that was over 24 hour period.

High # for rows read indicates presence of table

scans which are usually costly especially when

tablescans are done multiple times.

Our original goal was to free up CPU cycles to avoid

potential costly hardware upgrades. Top

contributors to CPU cycles are tables with too many

tablescans.

As noticed in this slide, top 5 tables use 76% of the

total rows read in a 24 hour time period.

25

Avg. IX Logical Reads = 0 indicates absence of index

scans (and hence presence of table scans).

High values for rows read lead to high CPU

consumption mostly due to costly table scans.

26

Once we identified tables that contributed to high CPU

usage, next task was to identify statements that were

actually running against them.

One of the most important KPIs for a statement is Index

Read Efficiency (IREF) for a statement defined as the

number of rows read by DB2 for potential inclusion for

each one row that was selected..

IREF = (No. of rows read) / (No. of rows selected)

High IREF indicates table scans due to missing indexes

(and hence the term) or possibility of leaf page scans due

to bad indexes indicating a need for better quality

indexes.

After running explain plans (DBI tools allow to do this), we

noticed there were few missing indexes for these

statements that were contributing to 76% of CPU usage.

27

For each of the costly statements, right click on the

statement and click on “Generate Explain” to take a

look at DB2’s Explain Plan.

We noticed Table Scans (as guessed in previous

slides) for most of the statements.

Clicking on “Design Analysis” on the top left of the

screen gave access to DB2’s Advisor and its

analysis as shown in next slide.

28

This slides shows the output of DB2 Advisor and its

analysis.

As evident from the output, for one of the statements,

we were able to reduce the cost of the query by

~64% by creating 4 indexes.

There is an option to either ‘save’ the output or ‘Run’

(create indexes right then and there). In production

environment, we saved the report and scheduled

index creation activity after obtaining approvals.

29

Just to recollect…This slide shows the CPU usage

before tuning activity was performed.

30

After 4 simple steps, we noticed the Avg. CPU

consumption is ~50% a big drop from earlier ~75-

80% !!

31

4 steps taken to reduce CPU utilization.

While it might appear to be like finding few needles in

haystack, with step 1, we tend to reduce the hay

stick size to manageable level.

Once Tables with high % of rows read are identified,

next step is to identify statements and analyzing

cost, creating good quality indexes.

32

This is challenge #2 in which we had to tune a SAS

workload.

33

This slide shows Brother Panther’s Work Load

analysis by user over 24 hours.

SASRRPD (2nd from top) is the USER that runs SAS

work load.

As noticed, after tuning the workload, the % CPU

time taken by SASRRPD user is < 7% with Index

Read Efficiency < 1 !

This is a result of tuning effort that could be easily

shared with management !

While we could potentially capture workload using

native db2 tools like event monitors at the

command line, it is very difficult to gauge the

relative cost of the workload at user ID or

application ID level.

34

Before incremental backups were implemented,

backup policy was to take full online backups

nightly.

Before switching to combination of full + incremental

backups, we wanted to identify opportunities to

tune full online backup.

Original backup runtimes were 10-12 hours and were

unacceptable.

35

Backup progress for each partition could be

monitored using DB2’s “list utilities show detail”

command.

36

An alternative to using load from cursor is to use

ADMIN_MOVE_TABLE stored procedure

37

with

 temp1 as

 (select TBSP_NAME as tbsp_name, sum(TBSP_USED_SIZE_KB/1024) as

tbsp_size

 from sysibmadm.tbsp_utilization

-- WHERE DBPGNAME in ('PDPG', 'ALLPG')

group by TBSP_NAME) ,

 temp2 as

 (select t1.tbspace as tbsp_name, count(*) as tbl_cnt

 from syscat.tables t1, syscat.tablespaces t2

 where t1.type='T‘ and t1.tbspace=t2.tbspace

-- and t2.ngname in ('ALLPG', 'PDPG')

 and t1.tbspace <> 'DWEDEFAULTCONTROL'

 group by t1.tbspace

 having count(*) > 1)

 select char(temp1.TBSP_NAME,20), temp1.tbsp_size, temp2.tbl_cnt

 from temp1, temp2 where temp1.tbsp_name=temp2.tbsp_name

order by temp1.tbsp_size desc fetch first 100 rows only with ur

;

38

SQL1 -- Identify tablespaces with > 1 GB HWM reduction opportunity:

SELECT CHAR(TBSP_NAME,18) AS TBSP_NAME,

 SUM((TBSP_PAGE_TOP-TBSP_USED_PAGES)*TBSP_PAGE_SIZE/1024/1024/1024) as

TO_BE_REDUCED_SPACE_GB

 FROM SYSIBMADM.TBSP_UTILIZATION

 GROUP BY TBSP_NAME

 HAVING SUM((TBSP_PAGE_TOP-TBSP_USED_PAGES)*TBSP_PAGE_SIZE/1024/1024/1024) > 1

 ORDER BY 2 DESC

 FETCH FIRST 100 ROWS ONLY WITH UR;

SQL 2 – Identify how much space (MB) would be reduced from each container:

(if you are curious to find out how much HWM in MB would be reduced by DB2)

SELECT

 char(TBSP_UTIL.TBSP_NAME,20) AS TABLESPACE,

 char(CONTAINER_NAME,50) as CONTAINER,

 TBSP_UTIL.DBPARTITIONNUM as PARTITION,

 TBSP_PAGE_TOP as HWM,

 (TBSP_FREE_SIZE_KB/1024) as FREE_MB,

 (TBSP_PAGE_TOP-TBSP_USED_PAGES)*TBSP_PAGE_SIZE/1024/1024 as

HWM_REDUCTION_OPPORTUNITY_MB

 from SYSIBMADM.TBSP_UTILIZATION TBSP_UTIL,

 SYSIBMADM.CONTAINER_UTILIZATION CONT_UTIL

WHERE TBSP_UTIL.TBSP_NAME=CONT_UTIL.TBSP_NAME AND

 TBSP_UTIL.DBPARTITIONNUM=CONT_UTIL.DBPARTITIONNUM

AND

TBSP_UTIL.TBSP_NAME=‘$TBSP’ order by TBSP_UTIL.DBPARTITIONNUM with ur;

39

URL: http://www.ibm.com/developerworks/data/library/techarticle/dm-

1005partitioningkeys/

Example from IBM Info Center:
$db2 "set serveroutput on"

$ db2 "CALL estimate_existing_data_skew('TPCD', 'SUPPLIER', 25)"

CALL estimate_existing_data_skew('TPCD', 'SUPPLIER', 25)

Return Status = 0

DATA SKEW ESTIMATION REPORT FOR TABLE: TPCD.SUPPLIER

Accuracy is based on 25% sample of data

--

TPCD.SUPPLIER

Estimated total number of records in the table: : 19,994,960

Estimated average number of records per partition : 2,499,368

Row count at partition 1 : 1,599,376 (Skew: -36.00%)

Row count at partition 2 : 2,402,472 (Skew: 3.87%)

Row count at partition 3 : 4,001,716 (Skew: 60.10%)

Row count at partition 4 : 2,394,468 (Skew: -4.19%)

Row count at partition 5 : 1,600,028 (Skew: -35.98%)

Row count at partition 6 : 1,599,296 (Skew: -36.01%)

Row count at partition 7 : 2,397,116 (Skew: -4.09%)

Row count at partition 8 : 4,000,488 (Skew: 60.05%)

Number of partitions: 8 (1, 2, 3, 4, 5, 6, 7, 8)

--

Total execution time: 20 seconds

40

Earlier backup duration was in the range of 9 to 13

hours.

After physical design changes, backup runtime is

averaging between 5 to 6 hours.

To save disk space on TSM and to reduce impact of

backups on workload, combination of

Full+Incremental backups were implemented.

Because of the physical design changes that were

made to help full backups, Incremental backups

mostly run in less than 1 hour and average

between 30 to 90 minutes on any given day

depending on the amount of data that needs to be

backed up.

41

A major question that is left over is if the physical

design changes that were done impacted SQL

workload in a negative way?

DBI’s Panther answers that question.

42

One exciting feature in DBI’s Panther is that it could

do workload comparison between 2 time intervals.

In this slide, the workload comparison in done

between before and after Physical design changes.

24 hour time interval was taken as comparison and

as you notice good physical design changes mostly

help SQL queries to run faster and DBI’s Panther

provides the proof for this !!

43

On a given day, about 20% of our Data Warehouse

was being “changed” (updates mostly).

While REORG operations could avoid costly double

IO, fundamental question that remains is which

tables to REORG?

44

REORGCHK is a native IBM DB2’s utility to help to

identify which tables to REORG.

45

DBI’s tools give a huge advantage in knowing which tables need to be

reorg’d in that the tools help in identifying those tables that were

read/accessed in the timeframe of interest.

Taking the traditional approach (reorgchk) does not give this option.

Formulae are based on the row size of the table and not how “active”

(rows read) the table really is.

SQL to find overflows for tables. Please note that ROWS_READ,

ROWS_WRITTEN, OVERFLOW_ACCESSESS values are since

database activation time.

db2 "select char(tabschema, 20), char(tabname, 40),

sum(overflow_accesses) as

total_overflow_accesses, sum(rows_read) as

total_rows_read, sum(rows_written) as

total_rows_written from sysibmadm.snaptab group

46

by tabschema, tabname order by

total_overflow_accesses desc , total_rows_read

desc fetch first 20 rows only with ur“

46

DBI’s tools give a huge advantage in knowing which tables need to be

reorg’d in that the tools help in identifying those tables that were

read/accessed in the timeframe of interest.

Taking the traditional approach (reorgchk) does not give this option.

Formulae are based on the row size of the table and not how “active”

(rows read) the table really is.

SQL to find overflows for tables. Please note that ROWS_READ,

ROWS_WRITTEN, OVERFLOW_ACCESSESS values are since

database activation time.

db2 "select char(tabschema, 20), char(tabname, 40),

sum(overflow_accesses) as

total_overflow_accesses, sum(rows_read) as

total_rows_read, sum(rows_written) as

total_rows_written from sysibmadm.snaptab group

47

by tabschema, tabname order by

total_overflow_accesses desc , total_rows_read

desc fetch first 20 rows only with ur“

47

Often system catalog tables show up in the list of top

tables with overflows.

48

Using DBI’s Brother Hawk, we reorg tables based on

% table overflow values.

If % table overflow > 3, table is reorg’d.

49

50

51

52

53

54

